
Design considerations for workflow management systems use in production
genomics research and the clinic

AE Ahmed1,2∗ , JM Allen3, T Bhat3,4,5, P Burra3,4† , CE Fliege3, SN Hart6, JR Heldenbrand3,
ME Hudson3,7, DD Istanto7, MT Kalmbach8, GD Kapraun8, KI Kendig3, MC Kendzior3, EW
Klee6, N Mattson8, CA Ross9, SM Sharif2, R Venkatakrishnan3, FM Fadlelmola1‡ , and LS

Mainzer3,10 ‡

1Center for Bioinformatics & Systems Biology, Faculty of Science, University of Khartoum, Sudan
2Department of Electrical & Electronic Engineering, Faculty of Engineering, University of Khartoum,

Sudan
3National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign,

Urbana, IL, USA
4Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

5Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana,
IL, USA

6Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic,
Rochester, MN, USA

7Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
8Department of Information Technology, Department of Laboratory Medicine and Pathology, Mayo

Clinic, Rochester, Minnesota, USA
9Laboratory Pathology and Extramural Applications, Department of Laboratory Medicine and

Pathology, Mayo Clinic, Rochester, MN, USA
10Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana,

IL, USA

Supplementary materials

Contents

1 Design considerations in building the variant calling pipeline 2

2 Workflows Invocations 3

3 Coding examples 4

4 Working directory structure 5
4.1 Nextflow . 5
4.2 WDL: Cromwell . 6
4.3 WDL: toil-wdl-runner . 7
4.4 WDL: miniWDL . 8
4.5 CWL: cwltool . 9
4.6 CWL: Cromwell . 9
4.7 CWL: toil-cwl-runner . 11

5 Scalability results 13
5.1 On AWS . 13
5.2 On Biocluster, Recent WfMS versions . 14
5.3 On Biocluster, Older WfMS versions . 15

∗Current address: Bernoulli Institute, University of Groningen, The Netherlands. azzaea@gmail.com
†Current address: Center for Computational Biology, University of California, Berkeley, CA, USA
‡These authors equally supervised this work

1

mailto:azzaea@gmail.com

1 Design considerations in building the variant calling pipeline

Design considerations for building a Swift/T-defined Variant Calling pipeline are detailed else-
where [2], so in this section, we only focus on respecting Modularity with an architecture that
allows consistent evaluation of Swift/T along with the other 3 WfMSs: Nextflow, CWL and
WDL.

In this context, modularity means the ability to construct a complete workflow from a set of
smaller and independent processes, apps, CommandLineTools, or tasks/subworkflows (as per
the semantics of each WfMS (see section Methods: Nomenclature)).

To meet the modularity constraint, src code is arranged as per Fig Supplementary 2a into
folders corresponding to each WfMS language, and within which there are folders for calling
tasks, unit-testing those tasks, and defining the logic of workflows composed of these tasks (ex-
cept for Nextflow). The tasks themselves were written in conditionals-free, stand alone bash
scripts that provide consistent output definitions and logging functionality regardless of inputs
specifications and bioinformatics tools being called (Fig Supplementary 2b). These bash scripts
are also free from streaming (i.e., piping) between processes for more robustness and easier de-
bugging of failure source when needed. This further allows seamless switching between Sentieon-
based [3] and GATK-based [4, 5] tools (or others) while using the same WfMS (and vice-versa).
For easier working with input json files (in case of WDL- and CWL- defined pipelines), helper
parser and validator scripts were written in python to populate values from an easy to construct
configuration file into the needed input json. This added a layer of abstraction/independence
between the processing logic of the workflow (conditions and loops- the DAG definition), and
the underlying invocations of the bioinformatics tools. Additionally, it allowed a head-to-head
comparison between the 3 languages (See sections Results: Language expressiveness - Results:
Support for modularity).

The 4 chosen WfMSs considered here (Nextflow, Swift/T, CWL and WDL) all have engines
that adopt the dataflow -paradigm. This means an inherent and implicit parallelism in running
computations based on data (and resources) availability (rather than location within a script)-
making them appropriate for sprouting parallel jobs rather easily (compared with, say, native

Pseudo code of a multi-sample variant calling pipeline

for each sample:
for each LANE:

if (pairedEndReads ?): PairedEndAlignment
if (singleEndReads ?): SingleEndAlignment

Merge aligned bams
if (deduplicate ?): Deduplication
for each CHR:

Base Quality Score Recalibration
Haplotyper

Merge gvcfs
for each CHR:

Joint Calling
GatherVCFs

Figure Supplementary 1: Analysis stages in a typical Genome Analysis Toolkit (GATK)-based
multi-sample Variant Calling pipeline where each yellow slice is a sample. Gray blocks denote
functional equivalence recommendations [1]- with re-alignment (after Deduplication) not shown.
Red arrows denote parallel stages, and Green arrows denote optional stages, and thus need a
WfMS that supports:Analysis sequential, parallel (looping) and conditional processing and also
nesting these within an overall loop.

2

(a) Code directory structure (b) Shell script design

Figure Supplementary 2: Architectural code organization of the implemented variant calling
pipeline in WDL and Nextflow. A slightly different organization was followed for the Swift/T
repo, but it follows similar ideas

bash parallelization and other top-down sequential languages). A complete evaluation of these
parallelization and run-time features follows in the main results sections (Data dependencies and
parallelism - Workflow dependency graph resolution and visualization). Performance aspects are
discussed in the remaining results sections (Executor-level differences - Robustness). Operational
aspects, like debugging and cross-compatibility are examined in the remaining results sections
(Debugging workflows - Cross-compatibility and conformance to standards).

2 Workflows Invocations

Custom Nextflow invocation

$ nextflow run workflow.nf -c backend_runtime_and_input.conf

Custom Swift/T invocation

$ swift/t -m backend_name -s runtime_conf.sh workflow.swift

Custom Cromwell invocation

$ # with WDL
$ java -Dconfig.file=backend_and_runtime.conf -jar cromwell.jar run workflow.wdl --

inputs inputs.json --options workflow_options.json
$ # with CWL
$ java -Dconfig.file=backend_and_runtime.conf -jar cromwell.jar run workflow.cwl --

inputs inputs.yml --type cwl --options workflow_options.json #The --options
workflow_options.json directive was not respected in our tests in Jan 2020

Figure Supplementary 3: Typical invocations of workflows written in each language examined in
this study, with configuration options specifying the backend against which to run the workflow,
its runtime settings and inputs to the workflow run. Example configuration files are provided in
our scalability-tst repo.

3

3 Coding examples

Nextflow DSL-1 process
// Defining and using a process (in Tasks/alignment.nf):
SampleNamesChannel = Channel.from(params.SampleName.tokenize(’,’)) // Comma -separated list of strings input
process Alignment {

input:
val SampleName from SampleNamesChannel // Implicit Parallelism over channel elements
"""
/bin/bash alignment.sh ... # Script in the ’shell’ directory
"""

}

Swift/T leaf function and its usage
// Defining a leaf function (in bioapps/align_dedup.swift):
@dispatch=WORKER
app (<outputs >) bwa_mem (<inputs >) {<command invocation >}
app (<outputs >) samtools_view (<inputs >) {<command invocation >}

// Using the leaf funciton:
import bioapps.align_dedup;
foreach sampleName in samples { // Explicit parallelism over samples

string AlignDir = dircat(vars["OUTPUTDIR"], sampleName);
mkdir(AlignDir) =>
alignedsam = bwa_mem(sampleName); // Explicit dependency via ’=>’ operator
alignedbam = samtools_view(alignedsam); // Implicit dependency via inputs

}

CWL v1.0 CommandLineTool and workflow
Defining a CommandLineTool (as ’alignmentCommand.cwl ’). ’dedupCommand.cwl ’ is defined similarly:
cwlVersion: v1.0
class: CommandLineTool
baseCommand: alignment.sh # Script in the ’shell ’ directory
inputs:

sampleName:
type: string

outputs:
alignedbam:

type: File
outputBinding:

glob: ’*.bam’

cwlVersion: v1.0
class: Workflow
requirements:

ScatterFeatureRequirement: {} # For parallelization over input array items
inputs:

samples_array: String[]
outputs: []
steps:

alignmentStep:
run: alignmentCommand.cwl
scatter: sampleName # Explicit Parallelism over samples
in:

sampleName: samples_array
out: [alignedbam] # Step output

dedupStep:
run: dedupCommand.cwl # CommandLineTool definition not provided , but similar to alignmentCommand.cwl above
scatter: sampleName
in:

sampleName: alignmentStep/alignedbam # Implicit dependency via inputs
out: []

WDL v1.0 task and workflow
Defining a task (in Tasks/alignment.wdl):
version 1.0 #if ommitted , defaults to version "draft -2"
task alignmentTask {

input {
String SampleName

}
command {

/bin/bash alignment.sh ... // Script in the ’shell’ directory
}

}

version 1.0 #if ommitted , defaults to version "draft -2"
import "Tasks/alignment.wdl" as ALIGN
workflow RunAlignmentTask {

scatter (sampleName in samples) { # Explicit Parallelism over samples
call ALIGN.alignmentTask as ALIGN_paired # Task defined with output ‘alignedbam ‘
call DEDUP.dedupTask as dedup {input: ALIGN_paired.alignedam} # Explicit dependency via inputs

}
}

Figure Supplementary 4: Minimal examples demonstrating equivalent parallel and sequential tasks
within a variant calling pipeline in each WfMS language. The relative length and sophistication
of CWL code can be appreciated here

4

4 Working directory structure

The workflow used here is the 1-step version of the pipeline used for testing scalability. There
is a hostname process that is run twice in parallel, then unique hostnames are sorted and
collated in a file. Testing was done in a local machine, and relevant comments accompany each
workflow run. The complete code can be found in our scalability-tst repo here: https:
//github.com/azzaea/scalability-tst

4.1 Nextflow

Nextflow defaults to creating a work directory where it is run. Each process will have its own
hexa-coded directory of all inputs, outputs, intermediates and logs. No need for a dedicated cat
process with Nextflow, since it has efficient channel operators for organizing such outputs.

The output of the workflow is sent to a specific directory in our code. Its contents are shown
in the snippet below.

Nextflow invocation

$nextflow -version

N E X T F L O W
version 19.10.0 build 5170
created 21 -10 -2019 15:07 UTC (17:07 CEST)
cite doi :10.1038/ nbt .3820
http :// nextflow.io

$
$nextflow run host_process.nf -profile standard --ntasks =2 --log=log.txt
log omitted
$
$ cat results.nf/hosts/log.txt
azza -Satellite -P845
$
$ tree work

work/
29

2fd42e9c4edfc45980bd3dac003c9b
.command.out
.command.sh
.command.begin
.command.log
.command.err
.command.run
.exitcode

1b
31200e421cdb1ab2bee26d5460147c

.command.out

.command.sh

.command.begin

.command.log

.command.err

.command.run

.exitcode
4 directories, 0 files

5

https://github.com/azzaea/scalability-tst
https://github.com/azzaea/scalability-tst

4.2 WDL: Cromwell

Cromwell defaults to creating a cromwell-execution directory where it is run. Each workflow
will have its own directory, and different runs will be different hexa-coded subfolders within.
Tasks will further have their own directories nested within their parent sub-workflows or scat-
tering patteren- if present. Similar to Nextflow, each process directory will host all of its inputs,
outputs, intermediates and logs.

The output of the workflow is sent to a specific directory via the workflow.options.json
file. Its contents are shown in the snippet below.

cromwell invocation

$ java -jar $crom --version
cromwell 42
$
$ java -jar cromwell -42. jar run host_process.wdl --inputs host_process_workflow.json --

options workflow_options.json
log omitted , containing final outputs location within cromwell -executions dir before

they are copied to destination specified within workflow.options.json
$
$ cat results.cromwell/hosts/log.txt
azza -Satellite -P845
$
$ tree cromwell -executions

cromwell-executions/
f247f741-f15b-4ff7-b661-2b87a9121fd1

call-catHostsTask
tmp.246499fd
execution

script.submit
script
log.txt
rc
stderr
stderr.background
stdout
stdout.background
script.background

call-host1
shard-1

tmp.0a8ca919
execution

script.submit
script
rc
stderr
stderr.background
stdout
stdout.background
script.background

shard-0
tmp.30a11e11
execution

script.submit
script
rc

6

stderr
stderr.background
stdout
stdout.background
script.background

12 directories, 25 files

4.3 WDL: toil-wdl-runner

toil-wdl-runner: defaults to deleting the working directory, and does not understand command
line arguments acceptable otherwise to Toil. Hence, below we explicitly generate a python
equivalent of our WDL code and edit it to accept command line options for specifying a working
directory and not deleting it upon successful workflow run.

Additionally, Toil doesn’t seem to have the ability to put output files in a user desired
destination. Instead, it puts them in the current directory from which it is run. The hostnames
retrieved in this case are unusual- preceded by apostrophe or letter (b).

Toil invocation

$ toil --version
4.1.0
$
$ toil -wdl -runner --dev_mode 3 host_process.wdl host_process_workflow.json
This mode translates our wdl code into python and produces a file named:

toilwdl_compiled.py
$
$ sed -i ’s/.* getDefaultOptions .*/ parser = Job.Runner.getDefaultArgumentParser ()/’

toilwdl_compiled.py
To allow passing command line options
$
$ sed -i ’s/.* options.clean .*/ options = parser.parse_args ()/’ toilwdl_compiled.py
To prevent deleting the working directory
$
$ mkdir workDir
$
$ python toilwdl_compiled.py --workDir workDir --cleanWorkDir never myJobStore
log omitted , no pointers to where outputs are; but they are placed in this directory
$
$ cat log.txt
’
b’azza -Satellite -P845
$ tree workDir

workDir/
node-991a1f3e-c498-44af-98a0-ce3b4698291c-2a77c9e44cbe4a17b74b11479a5c5836

tmprfhl6a73
worker_log.txt
697be4c6-1294-4982-a484-9408ae2b00fc

log.txt
tj9id25at

execution
tmpv3sjqcun

worker_log.txt
efe248ad-e14b-466b-9331-225fe59e2e07

tmpc8ux75re
worker_log.txt
62c036a4-5252-413f-b084-61ea8711a532

t8hk6ry_n
execution

tmp_2o9cnwe

7

worker_log.txt
569830e3-645c-4749-87d9-a5b017bfaaa4

tpoe1tqu9
execution

66b4264f-93fd-4469-acf9-2511b72da37b
39c81999-e94e-4383-918e-3941352eac67
16b55c7b-8a47-4725-afed-c35ad581f7e3
9f67794f-127b-4f22-981f-791e2af310aa

tmppiv6fdmx
worker_log.txt

tmpab7pga6d
worker_log.txt
f5634d44-86cc-4898-b10e-54b31c48806a

telqlwbjb
execution

tmploar_wsi
worker_log.txt

25 directories, 8 files

4.4 WDL: miniWDL

miniWDL defaults to creating a timestamped named working directory per each workflow run,
appended by the workflow name. It requires that only inputs that the workflow actually uses
are present in the input json file. Under the hood, for miniWDL to run locally, docker needs to
be installed with proper user permissions. A parallelized workflow will consequently be run in
Docker swarm mode. This explains the ouput in the example below- hostnames are from this
docker swarm environment (not the local environment).

Similar to Toil, miniWDL does not offer the possibility to place outputs in a user defined
destination. It doesn’t place outputs in the current directory either, but the execution log will
direct to their location within the execution directory.

miniWDL invocation

$ miniwdl --version
miniwdl v0.7.4
miniwdl.plugin.file_download gs = WDL.runtime.download:gsutil_downloader miniwdl

0.7.4
Cromwell 47
$
$ miniwdl run -i host_process_workflow.json host_process.wdl
log omitted , containing final outputs location within the timestamped execution

directory
$
$ cat /home/azza/github_repos/varCall/scalability -tst/src/wdl /20200604 _143731_hostwf/

output_links/log/log.txt
8ef5b47e1ee3
af718034688c
$
$ tree 20200604 _143731_hostwf

20200604_143731_hostwf/
inputs.json
outputs.json
rerun
workflow.log
call-host1-1

task.log
inputs.json

8

outputs.json
command
stderr.txt
stdout.txt
work
output_links

call-catHostsTask
task.log
inputs.json
outputs.json
command
stderr.txt
stdout.txt
work

log.txt
output_links

result
log.txt

wdl
host_process.wdl

output_links
log

log.txt
call-host1-0

task.log
inputs.json
outputs.json
command
stderr.txt
stdout.txt
work
output_links

16 directories, 26 files

4.5 CWL: cwltool

cwltool does not create a working directory, and outputs are placed directly in the current
directory.

cwltool invocation

$ cwltool --version
/home/azza/pythonenvs/toil3/bin/cwltool 3.0.20200324120055
$
$ cwltool host_process.cwl host_process_workflow.yml
log omitted , containing final outputs and their locations
$
$ cat /home/azza/github_repos/varCall/scalability -tst/src/cwl/log.txt
azza -Satellite -P845

4.6 CWL: Cromwell

The general notes of section 4.2 apply here, except that the –options directive is not respeced
by Cromwell, and hence there is no way to specify the final destination of output files readily.

9

Instead, the log gives complete path to where outputs are stored within the cromwell-execution
directory

Cromwell invocation

$ java -jar $crom --version
cromwell 42
$
$ java -jar $crom run host_process.cwl -i host_process_workflow.yml --type cwl
log omitted , containing final outputs location within cromwell -executions dir
$
$ cat /home/azza/github_repos/varCall/scalability -tst/src/cwl/cromwell -executions/

host_process.cwl/b13c231f -b3aa -4880-b503 -afc0edf541e8/call -catsortStep/execution/log
.txt

azza -Satellite -P845
$
$ tree cromwell -executions

cromwell-executions/
host_process.cwl

b13c231f-b3aa-4880-b503-afc0edf541e8
call-catsortStep

inputs
1264064947

result.host.txt
-532886412

result.host.txt
tmp.dd2a99cc
execution

script.submit
glob-b34dfc006a981a93d6da067cf50036fe.list
script
log.txt
rc
stderr
stderr.background
log.txt.background
script.background
glob-b34dfc006a981a93d6da067cf50036fe

cromwell_glob_control_file
call-hostStep1

shard-1
tmp.3bf79c99
execution

script.submit
glob-b34dfc006a981a93d6da067cf50036fe.list
script
rc
stderr
stderr.background
result.host.txt
result.host.txt.background
script.background
glob-b34dfc006a981a93d6da067cf50036fe

cromwell_glob_control_file
shard-0

tmp.1637f792

10

execution
script.submit
glob-b34dfc006a981a93d6da067cf50036fe.list
script
rc
stderr
stderr.background
result.host.txt
result.host.txt.background
script.background
glob-b34dfc006a981a93d6da067cf50036fe

cromwell_glob_control_file
call-rangeStep

tmp.01de7c14
execution

script.submit
glob-b34dfc006a981a93d6da067cf50036fe.list
script
rc
stderr
stderr.background
stdout
stdout.background
script.background
glob-b34dfc006a981a93d6da067cf50036fe

cromwell_glob_control_file
22 directories, 42 files

4.7 CWL: toil-cwl-runner

The general notes of section 4.3 apply here, except that toil-cwl-runner accepts command
line options directly.

Toil invocation

$ toil --version
4.1.0
$
$ mkdir workDir
$
$ toil -cwl -runner --workDir workDir --cleanWorkDir never host_process.cwl

host_process_workflow.yml
log omitted
$
$ cat log.txt
azza -Satellite -P845
$
$ tree workDir

workDir/
node-89dc310f-9595-4a9e-97aa-f71d3f24652d-2a77c9e44cbe4a17b74b11479a5c5836

tmp6s3gi8fm
worker_log.txt
1a683141-6c14-4ab1-bbc4-b093246bb5bf

tzxrehcmg
out

t8syjkal3

11

tmp-outsm57wg9r
tmp-outbmlgcskr

tah5qtjw0
tnq9ijiwb

7c55fea3-7e03-495d-9636-ce8af16bbf80
tmpymlh10pb

worker_log.txt
tmpi64silti

worker_log.txt
7222d661-95b0-445b-be5b-a12b83ca1aa8

tmph9k9tuhb
worker_log.txt

tmpks6eh_0m
worker_log.txt

tmpzek_gzg3
worker_log.txt
79905428-016a-4cd1-b968-95cb5bbfa001

txbku8b2q
t231lba6i

out
tl4zpjmr7

tmp-out2774dp3e
tmp-outn66yom55

result.host.txt
tqix7a77y

tmpgme2si7h
worker_log.txt
c9f654f1-5167-422e-b913-e6ff8aa575fb

tmpn38udpjq
worker_log.txt
d023bfcb-e40e-48bf-af3f-a26b347ae3e0

ttcurwhla
tvjhie4dj

tmp-out7a0iq94w
result.host.txt

tmp-outu6c68t67
t81_96enr

out
tchmo684i

tmpm0l60nc6
worker_log.txt
54da9631-5317-46f3-8965-4cbb6f842b70

tmp1s19t2nm
worker_log.txt
b2ab1ed4-247a-44ac-82c0-f6ea7584c9a0

tmphzzn5mh2.tmp
tmp4c_nsumn.tmp
tl17es875

out
taqvgxqja
tz_walc9l

12

t_g6ohtq5
tmp-out1coaxjj6

log.txt
tmp-outon4tl9z7

47 directories, 15 files

5 Scalability results

5.1 On AWS

For the AWS experiments reported below, which were performed in 2019, we used the then most
recent version of the runners: Cromwell 47 and Nextflow 19.04.1.5072

Figure Supplementary 5: (Left) Involuntary and (Right) Voluntary context switches for each
scalability scenario.

Figure Supplementary 6: CPU utilization on the head node upon the execution of each workflow
run.

Cromwell was run with the in-memory database (the default), in run mode. Cromwell uses
this database to track the execution of workflows and store outputs. For features like call
caching, having a separate mysql database is necessary. This issue may have an effect on the
CPU utilization.

13

5.2 On Biocluster, Recent WfMS versions

The testing reported below was done in 2021, using the most recent version of the runners
available: Cromwell 63, Toil 5.3.0 and Nextflow 21.04.1.5556. Experiments were performed on
the normal queue of Biocluster, composed of 5 Supermicro SYS-2049U-TR4 nodes, each of 72
cores. The cluster is not dedicated, so the data is affected by the queue load at the time.

Figure Supplementary 7: Scaling a one-step (top) and two-step (bottom) workflow in Toil+CWL,
Cromwell+CWL, Cromwell+WDL and Nextflow. Nextflow can be up to 50x faster than Cromwell,
regardless of the language (middle panel), while toil tends to fail unpredictably. The thick green
line in rightmost panel is the theoretical number of cluster nodes, which is a ceiling of the ratio
of the number of tasks divided by the number of cores per node (72)

Figure Supplementary 8: (Left) Involuntary and (Right) Voluntary context switches for each
scalability scenario

Figure Supplementary 9: CPU utilization on the head node upon the execution of each workflow
run

14

5.3 On Biocluster, Older WfMS versions

The experiments reported below were done in 2019, using the then most recent version of the
runners: Cromwell 47 and Nextflow 19.04.1.5072. They were done on the normal queue, com-
posed of 5 Supermicro SYS-2049U-TR4 nodes, each of 72 cores. The cluster is not dedicated, so
the data is affected by the queue load at the time.

(a) (Top) Execution times.
(Bottom) Nextflow/Cromwell Speed-up. (b) Tasks distribution across nodes.

Figure Supplementary 10: Scaling a one-step (solid line) and two-step (dashed line) workflow in
Cromwell+CWL (black), Cromwell+WDL (yellow) and Nextflow (blue). Nextflow can be up to
20x faster than Cromwell, regardless of the language (Supplementary 10a, bottom). The thick
green line in Supplementary 10b is the theoretical number of cluster nodes, which is a ceiling of
the ratio of the number of tasks divided by the number of cores per node (72)

Figure Supplementary 11: (Left) Involuntary and (Right) Voluntary context switches for each
scalability scenario

Figure Supplementary 12: CPU utilization on the head node upon the execution of each workflow
run

15

Acronyms

CWL Common Workflow Languagen.

DAG Directed Acyclic Graph.

GATK Genome Analysis Toolkit.

WDL Workflow Description Language.

WfMS Workflow Management System.

References

1. Regier, A. A. et al. Functional equivalence of genome sequencing analysis pipelines enables
harmonized variant calling across human genetics projects. Nat. Commun. 9, 4038 (2018).

2. Ahmed, A. E. et al. Managing genomic variant calling workflows with Swift/T. PloS one 14
(2019).

3. Freed, D. N., Aldana, R., Weber, J. A. & Edwards, J. S. The Sentieon Genomics Tools-A
fast and accurate solution to variant calling from next-generation sequence data. bioRxiv,
115717 (2017).

4. McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Research 20, 1297–1303 (July 2010).

5. Van der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: the genome
analysis toolkit best practices pipeline. Curr. Protoc. Bioinf. 43, 11–10 (2013).

16

	Design considerations in building the variant calling pipeline
	Workflows Invocations
	Coding examples
	Working directory structure
	Nextflow
	WDL: Cromwell
	WDL: toil-wdl-runner
	WDL: miniWDL
	CWL: cwltool
	CWL: Cromwell
	CWL: toil-cwl-runner

	Scalability results
	On AWS
	On Biocluster, Recent WfMS versions
	On Biocluster, Older WfMS versions

